2 ---------------------------------------------------------------------------
3 Copyright (c) 2003, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
8 The free distribution and use of this software in both source and binary
9 form is allowed (with or without changes) provided that:
11 1. distributions of this source code include the above copyright
12 notice, this list of conditions and the following disclaimer;
14 2. distributions in binary form include the above copyright
15 notice, this list of conditions and the following disclaimer
16 in the documentation and/or other associated materials;
18 3. the copyright holder's name is not used to endorse products
19 built using this software without specific written permission.
21 ALTERNATIVELY, provided that this notice is retained in full, this product
22 may be distributed under the terms of the GNU General Public License (GPL),
23 in which case the provisions of the GPL apply INSTEAD OF those given above.
27 This software is provided 'as is' with no explicit or implied warranties
28 in respect of its properties, including, but not limited to, correctness
29 and/or fitness for purpose.
30 ---------------------------------------------------------------------------
31 Issue Date: 26/08/2003
33 My thanks go to Dag Arne Osvik for devising the schemes used here for key
34 length derivation from the form of the key schedule
36 This file contains the compilation options for AES (Rijndael) and code
37 that is common across encryption, key scheduling and table generation.
41 These source code files implement the AES algorithm Rijndael designed by
42 Joan Daemen and Vincent Rijmen. This version is designed for the standard
43 block size of 16 bytes and for key sizes of 128, 192 and 256 bits (16, 24
46 This version is designed for flexibility and speed using operations on
47 32-bit words rather than operations on bytes. It can be compiled with
48 either big or little endian internal byte order but is faster when the
49 native byte order for the processor is used.
53 The cipher interface is implemented as an array of bytes in which lower
54 AES bit sequence indexes map to higher numeric significance within bytes.
56 aes_08t (an unsigned 8-bit type)
57 aes_32t (an unsigned 32-bit type)
58 struct aes_encrypt_ctx (structure for the cipher encryption context)
59 struct aes_decrypt_ctx (structure for the cipher decryption context)
60 aes_rval the function return type
64 aes_rval aes_encrypt_key128(const void *in_key, aes_encrypt_ctx cx[1]);
65 aes_rval aes_encrypt_key192(const void *in_key, aes_encrypt_ctx cx[1]);
66 aes_rval aes_encrypt_key256(const void *in_key, aes_encrypt_ctx cx[1]);
67 aes_rval aes_encrypt(const void *in_blk,
68 void *out_blk, const aes_encrypt_ctx cx[1]);
70 aes_rval aes_decrypt_key128(const void *in_key, aes_decrypt_ctx cx[1]);
71 aes_rval aes_decrypt_key192(const void *in_key, aes_decrypt_ctx cx[1]);
72 aes_rval aes_decrypt_key256(const void *in_key, aes_decrypt_ctx cx[1]);
73 aes_rval aes_decrypt(const void *in_blk,
74 void *out_blk, const aes_decrypt_ctx cx[1]);
76 IMPORTANT NOTE: If you are using this C interface with dynamic tables make sure that
77 you call genTabs() before AES is used so that the tables are initialised.
79 C++ aes class subroutines:
81 Class AESencrypt for encryption
85 AESencrypt(const void *in_key) - 128 bit key
87 void key128(const void *in_key)
88 void key192(const void *in_key)
89 void key256(const void *in_key)
90 void encrypt(const void *in_blk, void *out_blk) const
92 Class AESdecrypt for encryption
95 AESdecrypt(const void *in_key) - 128 bit key
97 void key128(const void *in_key)
98 void key192(const void *in_key)
99 void key256(const void *in_key)
100 void decrypt(const void *in_blk, void *out_blk) const
104 The files used to provide AES (Rijndael) are
106 a. aes.h for the definitions needed for use in C.
107 b. aescpp.h for the definitions needed for use in C++.
108 c. aesopt.h for setting compilation options (also includes common code).
109 d. aescrypt.c for encryption and decrytpion, or
110 e. aeskey.c for key scheduling.
111 f. aestab.c for table loading or generation.
112 g. aescrypt.asm for encryption and decryption using assembler code.
113 h. aescrypt.mmx.asm for encryption and decryption using MMX assembler.
115 To compile AES (Rijndael) for use in C code use aes.h and set the
116 defines here for the facilities you need (key lengths, encryption
117 and/or decryption). Do not define AES_DLL or AES_CPP. Set the options
118 for optimisations and table sizes here.
120 To compile AES (Rijndael) for use in in C++ code use aescpp.h but do
123 To compile AES (Rijndael) in C as a Dynamic Link Library DLL) use
124 aes.h and include the AES_DLL define.
126 CONFIGURATION OPTIONS (here and in aes.h)
128 a. set AES_DLL in aes.h if AES (Rijndael) is to be compiled as a DLL
129 b. You may need to set PLATFORM_BYTE_ORDER to define the byte order.
130 c. If you want the code to run in a specific internal byte order, then
131 ALGORITHM_BYTE_ORDER must be set accordingly.
132 d. set other configuration options decribed below.
138 #include <asterisk/aes.h>
140 /* CONFIGURATION - USE OF DEFINES
142 Later in this section there are a number of defines that control the
143 operation of the code. In each section, the purpose of each define is
144 explained so that the relevant form can be included or excluded by
145 setting either 1's or 0's respectively on the branches of the related
149 /* PLATFORM SPECIFIC INCLUDES */
151 #if defined( __OpenBSD__ )
152 # include <machine/types.h>
153 # include <sys/endian.h>
154 #elif defined( __FreeBSD__ ) || defined( __NetBSD__ )
155 # include <sys/types.h>
156 # include <sys/endian.h>
157 #elif defined( BSD ) && ( BSD >= 199103 ) || defined(__APPLE__)
158 # include <machine/endian.h>
159 #elif defined ( SOLARIS )
160 # include <solaris-compat/compat.h>
161 #elif defined( __GNUC__ ) || defined( __GNU_LIBRARY__ )
163 #if !defined(__APPLE__)
164 # include <byteswap.h>
166 #elif defined( linux )
170 /* BYTE ORDER IN 32-BIT WORDS
172 To obtain the highest speed on processors with 32-bit words, this code
173 needs to determine the byte order of the target machine. The following
174 block of code is an attempt to capture the most obvious ways in which
175 various environemnts define byte order. It may well fail, in which case
176 the definitions will need to be set by editing at the points marked
177 **** EDIT HERE IF NECESSARY **** below. My thanks to Peter Gutmann for
178 some of these defines (from cryptlib).
181 #define BRG_LITTLE_ENDIAN 1234 /* byte 0 is least significant (i386) */
182 #define BRG_BIG_ENDIAN 4321 /* byte 0 is most significant (mc68k) */
184 #if defined( __alpha__ ) || defined( __alpha ) || defined( i386 ) || \
185 defined( __i386__ ) || defined( _M_I86 ) || defined( _M_IX86 ) || \
186 defined( __OS2__ ) || defined( sun386 ) || defined( __TURBOC__ ) || \
187 defined( vax ) || defined( vms ) || defined( VMS ) || \
190 #define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
194 #if defined( AMIGA ) || defined( applec ) || defined( __AS400__ ) || \
195 defined( _CRAY ) || defined( __hppa ) || defined( __hp9000 ) || \
196 defined( ibm370 ) || defined( mc68000 ) || defined( m68k ) || \
197 defined( __MRC__ ) || defined( __MVS__ ) || defined( __MWERKS__ ) || \
198 defined( sparc ) || defined( __sparc) || defined( SYMANTEC_C ) || \
199 defined( __TANDEM ) || defined( THINK_C ) || defined( __VMCMS__ )
201 #define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
205 /* if the platform is still not known, try to find its byte order */
206 /* from commonly used definitions in the headers included earlier */
208 #if !defined(PLATFORM_BYTE_ORDER)
210 #if defined(LITTLE_ENDIAN) || defined(BIG_ENDIAN)
211 # if defined(LITTLE_ENDIAN) && !defined(BIG_ENDIAN)
212 # define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
213 # elif !defined(LITTLE_ENDIAN) && defined(BIG_ENDIAN)
214 # define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
215 # elif defined(BYTE_ORDER) && (BYTE_ORDER == LITTLE_ENDIAN)
216 # define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
217 # elif defined(BYTE_ORDER) && (BYTE_ORDER == BIG_ENDIAN)
218 # define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
221 #elif defined(_LITTLE_ENDIAN) || defined(_BIG_ENDIAN)
222 # if defined(_LITTLE_ENDIAN) && !defined(_BIG_ENDIAN)
223 # define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
224 # elif !defined(_LITTLE_ENDIAN) && defined(_BIG_ENDIAN)
225 # define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
226 # elif defined(_BYTE_ORDER) && (_BYTE_ORDER == _LITTLE_ENDIAN)
227 # define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
228 # elif defined(_BYTE_ORDER) && (_BYTE_ORDER == _BIG_ENDIAN)
229 # define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
232 #elif defined(__LITTLE_ENDIAN__) || defined(__BIG_ENDIAN__)
233 # if defined(__LITTLE_ENDIAN__) && !defined(__BIG_ENDIAN__)
234 # define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
235 # elif !defined(__LITTLE_ENDIAN__) && defined(__BIG_ENDIAN__)
236 # define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
237 # elif defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __LITTLE_ENDIAN__)
238 # define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
239 # elif defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __BIG_ENDIAN__)
240 # define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
243 #elif 0 /* **** EDIT HERE IF NECESSARY **** */
244 #define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
246 #elif 0 /* **** EDIT HERE IF NECESSARY **** */
247 #define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
250 #error Please edit aesopt.h (line 235 or 238) to set the platform byte order
255 /* SOME LOCAL DEFINITIONS */
259 #define FOUR_TABLES 4
265 #define aes_sw32 bswap32
266 #elif defined(bswap_32)
267 #define aes_sw32 bswap_32
269 #define brot(x,n) (((aes_32t)(x) << n) | ((aes_32t)(x) >> (32 - n)))
270 #define aes_sw32(x) ((brot((x),8) & 0x00ff00ff) | (brot((x),24) & 0xff00ff00))
273 /* 1. FUNCTIONS REQUIRED
275 This implementation provides subroutines for encryption, decryption
276 and for setting the three key lengths (separately) for encryption
277 and decryption. When the assembler code is not being used the following
278 definition blocks allow the selection of the routines that are to be
279 included in the compilation.
283 #define ENCRYPTION_KEY_SCHEDULE
288 #define DECRYPTION_KEY_SCHEDULE
291 /* 2. ASSEMBLER SUPPORT
293 This define (which can be on the command line) enables the use of the
294 assembler code routines for encryption and decryption with the C code
295 only providing key scheduling
301 /* 3. BYTE ORDER WITHIN 32 BIT WORDS
303 The fundamental data processing units in Rijndael are 8-bit bytes. The
304 input, output and key input are all enumerated arrays of bytes in which
305 bytes are numbered starting at zero and increasing to one less than the
306 number of bytes in the array in question. This enumeration is only used
307 for naming bytes and does not imply any adjacency or order relationship
308 from one byte to another. When these inputs and outputs are considered
309 as bit sequences, bits 8*n to 8*n+7 of the bit sequence are mapped to
310 byte[n] with bit 8n+i in the sequence mapped to bit 7-i within the byte.
311 In this implementation bits are numbered from 0 to 7 starting at the
312 numerically least significant end of each byte (bit n represents 2^n).
314 However, Rijndael can be implemented more efficiently using 32-bit
315 words by packing bytes into words so that bytes 4*n to 4*n+3 are placed
316 into word[n]. While in principle these bytes can be assembled into words
317 in any positions, this implementation only supports the two formats in
318 which bytes in adjacent positions within words also have adjacent byte
319 numbers. This order is called big-endian if the lowest numbered bytes
320 in words have the highest numeric significance and little-endian if the
323 This code can work in either order irrespective of the order used by the
324 machine on which it runs. Normally the internal byte order will be set
325 to the order of the processor on which the code is to be run but this
326 define can be used to reverse this in special situations
328 NOTE: Assembler code versions rely on PLATFORM_BYTE_ORDER being set
330 #if 1 || defined(AES_ASM)
331 #define ALGORITHM_BYTE_ORDER PLATFORM_BYTE_ORDER
333 #define ALGORITHM_BYTE_ORDER BRG_LITTLE_ENDIAN
335 #define ALGORITHM_BYTE_ORDER BRG_BIG_ENDIAN
337 #error The algorithm byte order is not defined
340 /* 4. FAST INPUT/OUTPUT OPERATIONS.
342 On some machines it is possible to improve speed by transferring the
343 bytes in the input and output arrays to and from the internal 32-bit
344 variables by addressing these arrays as if they are arrays of 32-bit
345 words. On some machines this will always be possible but there may
346 be a large performance penalty if the byte arrays are not aligned on
347 the normal word boundaries. On other machines this technique will
348 lead to memory access errors when such 32-bit word accesses are not
349 properly aligned. The option SAFE_IO avoids such problems but will
350 often be slower on those machines that support misaligned access
351 (especially so if care is taken to align the input and output byte
352 arrays on 32-bit word boundaries). If SAFE_IO is not defined it is
353 assumed that access to byte arrays as if they are arrays of 32-bit
354 words will not cause problems when such accesses are misaligned.
356 #if 1 && !defined(_MSC_VER)
362 The code for encryption and decrytpion cycles through a number of rounds
363 that can be implemented either in a loop or by expanding the code into a
364 long sequence of instructions, the latter producing a larger program but
365 one that will often be much faster. The latter is called loop unrolling.
366 There are also potential speed advantages in expanding two iterations in
367 a loop with half the number of iterations, which is called partial loop
368 unrolling. The following options allow partial or full loop unrolling
369 to be set independently for encryption and decryption
372 #define ENC_UNROLL FULL
374 #define ENC_UNROLL PARTIAL
376 #define ENC_UNROLL NONE
380 #define DEC_UNROLL FULL
382 #define DEC_UNROLL PARTIAL
384 #define DEC_UNROLL NONE
387 /* 6. FAST FINITE FIELD OPERATIONS
389 If this section is included, tables are used to provide faster finite
390 field arithmetic (this has no effect if FIXED_TABLES is defined).
396 /* 7. INTERNAL STATE VARIABLE FORMAT
398 The internal state of Rijndael is stored in a number of local 32-bit
399 word varaibles which can be defined either as an array or as individual
400 names variables. Include this section if you want to store these local
401 varaibles in arrays. Otherwise individual local variables will be used.
407 /* In this implementation the columns of the state array are each held in
408 32-bit words. The state array can be held in various ways: in an array
409 of words, in a number of individual word variables or in a number of
410 processor registers. The following define maps a variable name x and
411 a column number c to the way the state array variable is to be held.
412 The first define below maps the state into an array x[c] whereas the
413 second form maps the state into a number of individual variables x0,
414 x1, etc. Another form could map individual state colums to machine
424 /* 8. FIXED OR DYNAMIC TABLES
426 When this section is included the tables used by the code are compiled
427 statically into the binary file. Otherwise the subroutine gen_tabs()
428 must be called to compute them before the code is first used.
434 /* 9. TABLE ALIGNMENT
436 On some sytsems speed will be improved by aligning the AES large lookup
437 tables on particular boundaries. This define should be set to a power of
438 two giving the desired alignment. It can be left undefined if alignment
439 is not needed. This option is specific to the Microsft VC++ compiler -
440 it seems to sometimes cause trouble for the VC++ version 6 compiler.
443 #if 0 && defined(_MSC_VER) && (_MSC_VER >= 1300)
444 #define TABLE_ALIGN 64
447 /* 10. INTERNAL TABLE CONFIGURATION
449 This cipher proceeds by repeating in a number of cycles known as 'rounds'
450 which are implemented by a round function which can optionally be speeded
451 up using tables. The basic tables are each 256 32-bit words, with either
452 one or four tables being required for each round function depending on
453 how much speed is required. The encryption and decryption round functions
454 are different and the last encryption and decrytpion round functions are
455 different again making four different round functions in all.
458 1. Normal encryption and decryption rounds can each use either 0, 1
459 or 4 tables and table spaces of 0, 1024 or 4096 bytes each.
460 2. The last encryption and decryption rounds can also use either 0, 1
461 or 4 tables and table spaces of 0, 1024 or 4096 bytes each.
463 Include or exclude the appropriate definitions below to set the number
464 of tables used by this implementation.
467 #if 1 /* set tables for the normal encryption round */
468 #define ENC_ROUND FOUR_TABLES
470 #define ENC_ROUND ONE_TABLE
472 #define ENC_ROUND NO_TABLES
475 #if 1 /* set tables for the last encryption round */
476 #define LAST_ENC_ROUND FOUR_TABLES
478 #define LAST_ENC_ROUND ONE_TABLE
480 #define LAST_ENC_ROUND NO_TABLES
483 #if 1 /* set tables for the normal decryption round */
484 #define DEC_ROUND FOUR_TABLES
486 #define DEC_ROUND ONE_TABLE
488 #define DEC_ROUND NO_TABLES
491 #if 1 /* set tables for the last decryption round */
492 #define LAST_DEC_ROUND FOUR_TABLES
494 #define LAST_DEC_ROUND ONE_TABLE
496 #define LAST_DEC_ROUND NO_TABLES
499 /* The decryption key schedule can be speeded up with tables in the same
500 way that the round functions can. Include or exclude the following
501 defines to set this requirement.
504 #define KEY_SCHED FOUR_TABLES
506 #define KEY_SCHED ONE_TABLE
508 #define KEY_SCHED NO_TABLES
511 /* END OF CONFIGURATION OPTIONS */
513 #define RC_LENGTH (5 * (AES_BLOCK_SIZE / 4 - 2))
515 /* Disable or report errors on some combinations of options */
517 #if ENC_ROUND == NO_TABLES && LAST_ENC_ROUND != NO_TABLES
518 #undef LAST_ENC_ROUND
519 #define LAST_ENC_ROUND NO_TABLES
520 #elif ENC_ROUND == ONE_TABLE && LAST_ENC_ROUND == FOUR_TABLES
521 #undef LAST_ENC_ROUND
522 #define LAST_ENC_ROUND ONE_TABLE
525 #if ENC_ROUND == NO_TABLES && ENC_UNROLL != NONE
527 #define ENC_UNROLL NONE
530 #if DEC_ROUND == NO_TABLES && LAST_DEC_ROUND != NO_TABLES
531 #undef LAST_DEC_ROUND
532 #define LAST_DEC_ROUND NO_TABLES
533 #elif DEC_ROUND == ONE_TABLE && LAST_DEC_ROUND == FOUR_TABLES
534 #undef LAST_DEC_ROUND
535 #define LAST_DEC_ROUND ONE_TABLE
538 #if DEC_ROUND == NO_TABLES && DEC_UNROLL != NONE
540 #define DEC_UNROLL NONE
543 /* upr(x,n): rotates bytes within words by n positions, moving bytes to
544 higher index positions with wrap around into low positions
545 ups(x,n): moves bytes by n positions to higher index positions in
546 words but without wrap around
547 bval(x,n): extracts a byte from a word
549 NOTE: The definitions given here are intended only for use with
550 unsigned variables and with shift counts that are compile
554 #if (ALGORITHM_BYTE_ORDER == BRG_LITTLE_ENDIAN)
555 #define upr(x,n) (((aes_32t)(x) << (8 * (n))) | ((aes_32t)(x) >> (32 - 8 * (n))))
556 #define ups(x,n) ((aes_32t) (x) << (8 * (n)))
557 #define bval(x,n) ((aes_08t)((x) >> (8 * (n))))
558 #define bytes2word(b0, b1, b2, b3) \
559 (((aes_32t)(b3) << 24) | ((aes_32t)(b2) << 16) | ((aes_32t)(b1) << 8) | (b0))
562 #if (ALGORITHM_BYTE_ORDER == BRG_BIG_ENDIAN)
563 #define upr(x,n) (((aes_32t)(x) >> (8 * (n))) | ((aes_32t)(x) << (32 - 8 * (n))))
564 #define ups(x,n) ((aes_32t) (x) >> (8 * (n))))
565 #define bval(x,n) ((aes_08t)((x) >> (24 - 8 * (n))))
566 #define bytes2word(b0, b1, b2, b3) \
567 (((aes_32t)(b0) << 24) | ((aes_32t)(b1) << 16) | ((aes_32t)(b2) << 8) | (b3))
572 #define word_in(x,c) bytes2word(((aes_08t*)(x)+4*c)[0], ((aes_08t*)(x)+4*c)[1], \
573 ((aes_08t*)(x)+4*c)[2], ((aes_08t*)(x)+4*c)[3])
574 #define word_out(x,c,v) { ((aes_08t*)(x)+4*c)[0] = bval(v,0); ((aes_08t*)(x)+4*c)[1] = bval(v,1); \
575 ((aes_08t*)(x)+4*c)[2] = bval(v,2); ((aes_08t*)(x)+4*c)[3] = bval(v,3); }
577 #elif (ALGORITHM_BYTE_ORDER == PLATFORM_BYTE_ORDER)
579 #define word_in(x,c) (*((aes_32t*)(x)+(c)))
580 #define word_out(x,c,v) (*((aes_32t*)(x)+(c)) = (v))
584 #define word_in(x,c) aes_sw32(*((aes_32t*)(x)+(c)))
585 #define word_out(x,c,v) (*((aes_32t*)(x)+(c)) = aes_sw32(v))
589 /* the finite field modular polynomial and elements */
594 /* multiply four bytes in GF(2^8) by 'x' {02} in parallel */
596 #define m1 0x80808080
597 #define m2 0x7f7f7f7f
598 #define gf_mulx(x) ((((x) & m2) << 1) ^ ((((x) & m1) >> 7) * BPOLY))
600 /* The following defines provide alternative definitions of gf_mulx that might
601 give improved performance if a fast 32-bit multiply is not available. Note
602 that a temporary variable u needs to be defined where gf_mulx is used.
604 #define gf_mulx(x) (u = (x) & m1, u |= (u >> 1), ((x) & m2) << 1) ^ ((u >> 3) | (u >> 6))
605 #define m4 (0x01010101 * BPOLY)
606 #define gf_mulx(x) (u = (x) & m1, ((x) & m2) << 1) ^ ((u - (u >> 7)) & m4)
609 /* Work out which tables are needed for the different options */
615 #define ENC_ROUND FOUR_TABLES
616 #ifdef LAST_ENC_ROUND
617 #undef LAST_ENC_ROUND
619 #define LAST_ENC_ROUND FOUR_TABLES
623 #define DEC_ROUND FOUR_TABLES
624 #ifdef LAST_DEC_ROUND
625 #undef LAST_DEC_ROUND
627 #define LAST_DEC_ROUND FOUR_TABLES
630 #define KEY_SCHED FOUR_TABLES
634 #if defined(ENCRYPTION) || defined(AES_ASM)
635 #if ENC_ROUND == ONE_TABLE
637 #elif ENC_ROUND == FOUR_TABLES
642 #if LAST_ENC_ROUND == ONE_TABLE
644 #elif LAST_ENC_ROUND == FOUR_TABLES
646 #elif !defined(SBX_SET)
651 #if defined(DECRYPTION) || defined(AES_ASM)
652 #if DEC_ROUND == ONE_TABLE
654 #elif DEC_ROUND == FOUR_TABLES
659 #if LAST_DEC_ROUND == ONE_TABLE
661 #elif LAST_DEC_ROUND == FOUR_TABLES
663 #elif !defined(ISB_SET)
668 #if defined(ENCRYPTION_KEY_SCHEDULE) || defined(DECRYPTION_KEY_SCHEDULE)
669 #if KEY_SCHED == ONE_TABLE
672 #elif KEY_SCHED == FOUR_TABLES
675 #elif !defined(SBX_SET)
680 /* generic definitions of Rijndael macros that use tables */
682 #define no_table(x,box,vf,rf,c) bytes2word( \
683 box[bval(vf(x,0,c),rf(0,c))], \
684 box[bval(vf(x,1,c),rf(1,c))], \
685 box[bval(vf(x,2,c),rf(2,c))], \
686 box[bval(vf(x,3,c),rf(3,c))])
688 #define one_table(x,op,tab,vf,rf,c) \
689 ( tab[bval(vf(x,0,c),rf(0,c))] \
690 ^ op(tab[bval(vf(x,1,c),rf(1,c))],1) \
691 ^ op(tab[bval(vf(x,2,c),rf(2,c))],2) \
692 ^ op(tab[bval(vf(x,3,c),rf(3,c))],3))
694 #define four_tables(x,tab,vf,rf,c) \
695 ( tab[0][bval(vf(x,0,c),rf(0,c))] \
696 ^ tab[1][bval(vf(x,1,c),rf(1,c))] \
697 ^ tab[2][bval(vf(x,2,c),rf(2,c))] \
698 ^ tab[3][bval(vf(x,3,c),rf(3,c))])
700 #define vf1(x,r,c) (x)
702 #define rf2(r,c) ((8+r-c)&3)
704 /* perform forward and inverse column mix operation on four bytes in long word x in */
705 /* parallel. NOTE: x must be a simple variable, NOT an expression in these macros. */
707 #if defined(FM4_SET) /* not currently used */
708 #define fwd_mcol(x) four_tables(x,t_use(f,m),vf1,rf1,0)
709 #elif defined(FM1_SET) /* not currently used */
710 #define fwd_mcol(x) one_table(x,upr,t_use(f,m),vf1,rf1,0)
712 #define dec_fmvars aes_32t g2
713 #define fwd_mcol(x) (g2 = gf_mulx(x), g2 ^ upr((x) ^ g2, 3) ^ upr((x), 2) ^ upr((x), 1))
717 #define inv_mcol(x) four_tables(x,t_use(i,m),vf1,rf1,0)
718 #elif defined(IM1_SET)
719 #define inv_mcol(x) one_table(x,upr,t_use(i,m),vf1,rf1,0)
721 #define dec_imvars aes_32t g2, g4, g9
722 #define inv_mcol(x) (g2 = gf_mulx(x), g4 = gf_mulx(g2), g9 = (x) ^ gf_mulx(g4), g4 ^= g9, \
723 (x) ^ g2 ^ g4 ^ upr(g2 ^ g9, 3) ^ upr(g4, 2) ^ upr(g9, 1))
727 #define ls_box(x,c) four_tables(x,t_use(f,l),vf1,rf2,c)
728 #elif defined(LS4_SET)
729 #define ls_box(x,c) four_tables(x,t_use(l,s),vf1,rf2,c)
730 #elif defined(FL1_SET)
731 #define ls_box(x,c) one_table(x,upr,t_use(f,l),vf1,rf2,c)
732 #elif defined(LS1_SET)
733 #define ls_box(x,c) one_table(x,upr,t_use(l,s),vf1,rf2,c)
735 #define ls_box(x,c) no_table(x,t_use(s,box),vf1,rf2,c)
738 #if defined(__cplusplus)
743 /* If there are no global variables, the definitions here can be
744 used to put the AES tables in a structure so that a pointer
745 can then be added to the AES context to pass them to the AES
746 routines that need them. If this facility is used, the calling
747 program has to ensure that this pointer is managed appropriately.
748 In particular, the value of the t_dec(in,it) item in the table
749 structure must be set to zero in order to ensure that the tables
750 are initialised. In practice the three code sequences in aeskey.c
751 that control the calls to gen_tabs() and the gen_tabs() routine
752 itself will have to be changed for a specific implementation. If
753 global variables are available it will generally be preferable to
754 use them with the precomputed FIXED_TABLES option that uses static
757 The following defines can be used to control the way the tables
758 are defined, initialised and used in embedded environments that
759 require special features for these purposes
761 the 't_dec' construction is used to declare fixed table arrays
762 the 't_set' construction is used to set fixed table values
763 the 't_use' construction is used to access fixed table values
767 t_xxx(s,box) => forward S box
768 t_xxx(i,box) => inverse S box
770 256 32-bit word OR 4 x 256 32-bit word tables:
772 t_xxx(f,n) => forward normal round
773 t_xxx(f,l) => forward last round
774 t_xxx(i,n) => inverse normal round
775 t_xxx(i,l) => inverse last round
776 t_xxx(l,s) => key schedule table
777 t_xxx(i,m) => key schedule table
779 Other variables and tables:
781 t_xxx(r,c) => the rcon table
784 #define t_dec(m,n) t_##m##n
785 #define t_set(m,n) t_##m##n
786 #define t_use(m,n) t_##m##n
788 #if defined(DO_TABLES) /* declare and instantiate tables */
790 /* finite field arithmetic operations for table generation */
792 #if defined(FIXED_TABLES) || !defined(FF_TABLES)
794 #define f2(x) ((x<<1) ^ (((x>>7) & 1) * WPOLY))
795 #define f4(x) ((x<<2) ^ (((x>>6) & 1) * WPOLY) ^ (((x>>6) & 2) * WPOLY))
796 #define f8(x) ((x<<3) ^ (((x>>5) & 1) * WPOLY) ^ (((x>>5) & 2) * WPOLY) \
797 ^ (((x>>5) & 4) * WPOLY))
798 #define f3(x) (f2(x) ^ x)
799 #define f9(x) (f8(x) ^ x)
800 #define fb(x) (f8(x) ^ f2(x) ^ x)
801 #define fd(x) (f8(x) ^ f4(x) ^ x)
802 #define fe(x) (f8(x) ^ f4(x) ^ f2(x))
806 #define f2(x) ((x) ? pow[log[x] + 0x19] : 0)
807 #define f3(x) ((x) ? pow[log[x] + 0x01] : 0)
808 #define f9(x) ((x) ? pow[log[x] + 0xc7] : 0)
809 #define fb(x) ((x) ? pow[log[x] + 0x68] : 0)
810 #define fd(x) ((x) ? pow[log[x] + 0xee] : 0)
811 #define fe(x) ((x) ? pow[log[x] + 0xdf] : 0)
812 #define fi(x) ((x) ? pow[ 255 - log[x]] : 0)
816 #if defined(FIXED_TABLES) /* declare and set values for static tables */
819 w(0x63), w(0x7c), w(0x77), w(0x7b), w(0xf2), w(0x6b), w(0x6f), w(0xc5),\
820 w(0x30), w(0x01), w(0x67), w(0x2b), w(0xfe), w(0xd7), w(0xab), w(0x76),\
821 w(0xca), w(0x82), w(0xc9), w(0x7d), w(0xfa), w(0x59), w(0x47), w(0xf0),\
822 w(0xad), w(0xd4), w(0xa2), w(0xaf), w(0x9c), w(0xa4), w(0x72), w(0xc0),\
823 w(0xb7), w(0xfd), w(0x93), w(0x26), w(0x36), w(0x3f), w(0xf7), w(0xcc),\
824 w(0x34), w(0xa5), w(0xe5), w(0xf1), w(0x71), w(0xd8), w(0x31), w(0x15),\
825 w(0x04), w(0xc7), w(0x23), w(0xc3), w(0x18), w(0x96), w(0x05), w(0x9a),\
826 w(0x07), w(0x12), w(0x80), w(0xe2), w(0xeb), w(0x27), w(0xb2), w(0x75),\
827 w(0x09), w(0x83), w(0x2c), w(0x1a), w(0x1b), w(0x6e), w(0x5a), w(0xa0),\
828 w(0x52), w(0x3b), w(0xd6), w(0xb3), w(0x29), w(0xe3), w(0x2f), w(0x84),\
829 w(0x53), w(0xd1), w(0x00), w(0xed), w(0x20), w(0xfc), w(0xb1), w(0x5b),\
830 w(0x6a), w(0xcb), w(0xbe), w(0x39), w(0x4a), w(0x4c), w(0x58), w(0xcf),\
831 w(0xd0), w(0xef), w(0xaa), w(0xfb), w(0x43), w(0x4d), w(0x33), w(0x85),\
832 w(0x45), w(0xf9), w(0x02), w(0x7f), w(0x50), w(0x3c), w(0x9f), w(0xa8),\
833 w(0x51), w(0xa3), w(0x40), w(0x8f), w(0x92), w(0x9d), w(0x38), w(0xf5),\
834 w(0xbc), w(0xb6), w(0xda), w(0x21), w(0x10), w(0xff), w(0xf3), w(0xd2),\
835 w(0xcd), w(0x0c), w(0x13), w(0xec), w(0x5f), w(0x97), w(0x44), w(0x17),\
836 w(0xc4), w(0xa7), w(0x7e), w(0x3d), w(0x64), w(0x5d), w(0x19), w(0x73),\
837 w(0x60), w(0x81), w(0x4f), w(0xdc), w(0x22), w(0x2a), w(0x90), w(0x88),\
838 w(0x46), w(0xee), w(0xb8), w(0x14), w(0xde), w(0x5e), w(0x0b), w(0xdb),\
839 w(0xe0), w(0x32), w(0x3a), w(0x0a), w(0x49), w(0x06), w(0x24), w(0x5c),\
840 w(0xc2), w(0xd3), w(0xac), w(0x62), w(0x91), w(0x95), w(0xe4), w(0x79),\
841 w(0xe7), w(0xc8), w(0x37), w(0x6d), w(0x8d), w(0xd5), w(0x4e), w(0xa9),\
842 w(0x6c), w(0x56), w(0xf4), w(0xea), w(0x65), w(0x7a), w(0xae), w(0x08),\
843 w(0xba), w(0x78), w(0x25), w(0x2e), w(0x1c), w(0xa6), w(0xb4), w(0xc6),\
844 w(0xe8), w(0xdd), w(0x74), w(0x1f), w(0x4b), w(0xbd), w(0x8b), w(0x8a),\
845 w(0x70), w(0x3e), w(0xb5), w(0x66), w(0x48), w(0x03), w(0xf6), w(0x0e),\
846 w(0x61), w(0x35), w(0x57), w(0xb9), w(0x86), w(0xc1), w(0x1d), w(0x9e),\
847 w(0xe1), w(0xf8), w(0x98), w(0x11), w(0x69), w(0xd9), w(0x8e), w(0x94),\
848 w(0x9b), w(0x1e), w(0x87), w(0xe9), w(0xce), w(0x55), w(0x28), w(0xdf),\
849 w(0x8c), w(0xa1), w(0x89), w(0x0d), w(0xbf), w(0xe6), w(0x42), w(0x68),\
850 w(0x41), w(0x99), w(0x2d), w(0x0f), w(0xb0), w(0x54), w(0xbb), w(0x16)
852 #define isb_data(w) \
853 w(0x52), w(0x09), w(0x6a), w(0xd5), w(0x30), w(0x36), w(0xa5), w(0x38),\
854 w(0xbf), w(0x40), w(0xa3), w(0x9e), w(0x81), w(0xf3), w(0xd7), w(0xfb),\
855 w(0x7c), w(0xe3), w(0x39), w(0x82), w(0x9b), w(0x2f), w(0xff), w(0x87),\
856 w(0x34), w(0x8e), w(0x43), w(0x44), w(0xc4), w(0xde), w(0xe9), w(0xcb),\
857 w(0x54), w(0x7b), w(0x94), w(0x32), w(0xa6), w(0xc2), w(0x23), w(0x3d),\
858 w(0xee), w(0x4c), w(0x95), w(0x0b), w(0x42), w(0xfa), w(0xc3), w(0x4e),\
859 w(0x08), w(0x2e), w(0xa1), w(0x66), w(0x28), w(0xd9), w(0x24), w(0xb2),\
860 w(0x76), w(0x5b), w(0xa2), w(0x49), w(0x6d), w(0x8b), w(0xd1), w(0x25),\
861 w(0x72), w(0xf8), w(0xf6), w(0x64), w(0x86), w(0x68), w(0x98), w(0x16),\
862 w(0xd4), w(0xa4), w(0x5c), w(0xcc), w(0x5d), w(0x65), w(0xb6), w(0x92),\
863 w(0x6c), w(0x70), w(0x48), w(0x50), w(0xfd), w(0xed), w(0xb9), w(0xda),\
864 w(0x5e), w(0x15), w(0x46), w(0x57), w(0xa7), w(0x8d), w(0x9d), w(0x84),\
865 w(0x90), w(0xd8), w(0xab), w(0x00), w(0x8c), w(0xbc), w(0xd3), w(0x0a),\
866 w(0xf7), w(0xe4), w(0x58), w(0x05), w(0xb8), w(0xb3), w(0x45), w(0x06),\
867 w(0xd0), w(0x2c), w(0x1e), w(0x8f), w(0xca), w(0x3f), w(0x0f), w(0x02),\
868 w(0xc1), w(0xaf), w(0xbd), w(0x03), w(0x01), w(0x13), w(0x8a), w(0x6b),\
869 w(0x3a), w(0x91), w(0x11), w(0x41), w(0x4f), w(0x67), w(0xdc), w(0xea),\
870 w(0x97), w(0xf2), w(0xcf), w(0xce), w(0xf0), w(0xb4), w(0xe6), w(0x73),\
871 w(0x96), w(0xac), w(0x74), w(0x22), w(0xe7), w(0xad), w(0x35), w(0x85),\
872 w(0xe2), w(0xf9), w(0x37), w(0xe8), w(0x1c), w(0x75), w(0xdf), w(0x6e),\
873 w(0x47), w(0xf1), w(0x1a), w(0x71), w(0x1d), w(0x29), w(0xc5), w(0x89),\
874 w(0x6f), w(0xb7), w(0x62), w(0x0e), w(0xaa), w(0x18), w(0xbe), w(0x1b),\
875 w(0xfc), w(0x56), w(0x3e), w(0x4b), w(0xc6), w(0xd2), w(0x79), w(0x20),\
876 w(0x9a), w(0xdb), w(0xc0), w(0xfe), w(0x78), w(0xcd), w(0x5a), w(0xf4),\
877 w(0x1f), w(0xdd), w(0xa8), w(0x33), w(0x88), w(0x07), w(0xc7), w(0x31),\
878 w(0xb1), w(0x12), w(0x10), w(0x59), w(0x27), w(0x80), w(0xec), w(0x5f),\
879 w(0x60), w(0x51), w(0x7f), w(0xa9), w(0x19), w(0xb5), w(0x4a), w(0x0d),\
880 w(0x2d), w(0xe5), w(0x7a), w(0x9f), w(0x93), w(0xc9), w(0x9c), w(0xef),\
881 w(0xa0), w(0xe0), w(0x3b), w(0x4d), w(0xae), w(0x2a), w(0xf5), w(0xb0),\
882 w(0xc8), w(0xeb), w(0xbb), w(0x3c), w(0x83), w(0x53), w(0x99), w(0x61),\
883 w(0x17), w(0x2b), w(0x04), w(0x7e), w(0xba), w(0x77), w(0xd6), w(0x26),\
884 w(0xe1), w(0x69), w(0x14), w(0x63), w(0x55), w(0x21), w(0x0c), w(0x7d),
887 w(0x00), w(0x01), w(0x02), w(0x03), w(0x04), w(0x05), w(0x06), w(0x07),\
888 w(0x08), w(0x09), w(0x0a), w(0x0b), w(0x0c), w(0x0d), w(0x0e), w(0x0f),\
889 w(0x10), w(0x11), w(0x12), w(0x13), w(0x14), w(0x15), w(0x16), w(0x17),\
890 w(0x18), w(0x19), w(0x1a), w(0x1b), w(0x1c), w(0x1d), w(0x1e), w(0x1f),\
891 w(0x20), w(0x21), w(0x22), w(0x23), w(0x24), w(0x25), w(0x26), w(0x27),\
892 w(0x28), w(0x29), w(0x2a), w(0x2b), w(0x2c), w(0x2d), w(0x2e), w(0x2f),\
893 w(0x30), w(0x31), w(0x32), w(0x33), w(0x34), w(0x35), w(0x36), w(0x37),\
894 w(0x38), w(0x39), w(0x3a), w(0x3b), w(0x3c), w(0x3d), w(0x3e), w(0x3f),\
895 w(0x40), w(0x41), w(0x42), w(0x43), w(0x44), w(0x45), w(0x46), w(0x47),\
896 w(0x48), w(0x49), w(0x4a), w(0x4b), w(0x4c), w(0x4d), w(0x4e), w(0x4f),\
897 w(0x50), w(0x51), w(0x52), w(0x53), w(0x54), w(0x55), w(0x56), w(0x57),\
898 w(0x58), w(0x59), w(0x5a), w(0x5b), w(0x5c), w(0x5d), w(0x5e), w(0x5f),\
899 w(0x60), w(0x61), w(0x62), w(0x63), w(0x64), w(0x65), w(0x66), w(0x67),\
900 w(0x68), w(0x69), w(0x6a), w(0x6b), w(0x6c), w(0x6d), w(0x6e), w(0x6f),\
901 w(0x70), w(0x71), w(0x72), w(0x73), w(0x74), w(0x75), w(0x76), w(0x77),\
902 w(0x78), w(0x79), w(0x7a), w(0x7b), w(0x7c), w(0x7d), w(0x7e), w(0x7f),\
903 w(0x80), w(0x81), w(0x82), w(0x83), w(0x84), w(0x85), w(0x86), w(0x87),\
904 w(0x88), w(0x89), w(0x8a), w(0x8b), w(0x8c), w(0x8d), w(0x8e), w(0x8f),\
905 w(0x90), w(0x91), w(0x92), w(0x93), w(0x94), w(0x95), w(0x96), w(0x97),\
906 w(0x98), w(0x99), w(0x9a), w(0x9b), w(0x9c), w(0x9d), w(0x9e), w(0x9f),\
907 w(0xa0), w(0xa1), w(0xa2), w(0xa3), w(0xa4), w(0xa5), w(0xa6), w(0xa7),\
908 w(0xa8), w(0xa9), w(0xaa), w(0xab), w(0xac), w(0xad), w(0xae), w(0xaf),\
909 w(0xb0), w(0xb1), w(0xb2), w(0xb3), w(0xb4), w(0xb5), w(0xb6), w(0xb7),\
910 w(0xb8), w(0xb9), w(0xba), w(0xbb), w(0xbc), w(0xbd), w(0xbe), w(0xbf),\
911 w(0xc0), w(0xc1), w(0xc2), w(0xc3), w(0xc4), w(0xc5), w(0xc6), w(0xc7),\
912 w(0xc8), w(0xc9), w(0xca), w(0xcb), w(0xcc), w(0xcd), w(0xce), w(0xcf),\
913 w(0xd0), w(0xd1), w(0xd2), w(0xd3), w(0xd4), w(0xd5), w(0xd6), w(0xd7),\
914 w(0xd8), w(0xd9), w(0xda), w(0xdb), w(0xdc), w(0xdd), w(0xde), w(0xdf),\
915 w(0xe0), w(0xe1), w(0xe2), w(0xe3), w(0xe4), w(0xe5), w(0xe6), w(0xe7),\
916 w(0xe8), w(0xe9), w(0xea), w(0xeb), w(0xec), w(0xed), w(0xee), w(0xef),\
917 w(0xf0), w(0xf1), w(0xf2), w(0xf3), w(0xf4), w(0xf5), w(0xf6), w(0xf7),\
918 w(0xf8), w(0xf9), w(0xfa), w(0xfb), w(0xfc), w(0xfd), w(0xfe), w(0xff)
922 /* These defines are used to ensure tables are generated in the
923 right format depending on the internal byte order required
926 #define w0(p) bytes2word(p, 0, 0, 0)
927 #define w1(p) bytes2word(0, p, 0, 0)
928 #define w2(p) bytes2word(0, 0, p, 0)
929 #define w3(p) bytes2word(0, 0, 0, p)
931 #define u0(p) bytes2word(f2(p), p, p, f3(p))
932 #define u1(p) bytes2word(f3(p), f2(p), p, p)
933 #define u2(p) bytes2word(p, f3(p), f2(p), p)
934 #define u3(p) bytes2word(p, p, f3(p), f2(p))
936 #define v0(p) bytes2word(fe(p), f9(p), fd(p), fb(p))
937 #define v1(p) bytes2word(fb(p), fe(p), f9(p), fd(p))
938 #define v2(p) bytes2word(fd(p), fb(p), fe(p), f9(p))
939 #define v3(p) bytes2word(f9(p), fd(p), fb(p), fe(p))
941 const aes_32t t_dec(r,c)[RC_LENGTH] =
943 w0(0x01), w0(0x02), w0(0x04), w0(0x08), w0(0x10),
944 w0(0x20), w0(0x40), w0(0x80), w0(0x1b), w0(0x36)
947 #define d_1(t,n,b,v) const t n[256] = { b(v##0) }
948 #define d_4(t,n,b,v) const t n[4][256] = { { b(v##0) }, { b(v##1) }, { b(v##2) }, { b(v##3) } }
950 #else /* declare and instantiate tables for dynamic value generation in in tab.c */
952 aes_32t t_dec(r,c)[RC_LENGTH];
954 #define d_1(t,n,b,v) t n[256]
955 #define d_4(t,n,b,v) t n[4][256]
959 #else /* declare tables without instantiation */
961 #if defined(FIXED_TABLES)
963 extern const aes_32t t_dec(r,c)[RC_LENGTH];
965 #if defined(_MSC_VER) && defined(TABLE_ALIGN)
966 #define d_1(t,n,b,v) extern __declspec(align(TABLE_ALIGN)) const t n[256]
967 #define d_4(t,n,b,v) extern __declspec(align(TABLE_ALIGN)) const t n[4][256]
969 #define d_1(t,n,b,v) extern const t n[256]
970 #define d_4(t,n,b,v) extern const t n[4][256]
974 extern aes_32t t_dec(r,c)[RC_LENGTH];
976 #if defined(_MSC_VER) && defined(TABLE_ALIGN)
977 #define d_1(t,n,b,v) extern __declspec(align(TABLE_ALIGN)) t n[256]
978 #define d_4(t,n,b,v) extern __declspec(align(TABLE_ALIGN)) t n[4][256]
980 #define d_1(t,n,b,v) extern t n[256]
981 #define d_4(t,n,b,v) extern t n[4][256]
988 d_1(aes_08t, t_dec(s,box), sb_data, h);
991 d_1(aes_08t, t_dec(i,box), isb_data, h);
995 d_1(aes_32t, t_dec(f,n), sb_data, u);
998 d_4(aes_32t, t_dec(f,n), sb_data, u);
1002 d_1(aes_32t, t_dec(f,l), sb_data, w);
1005 d_4(aes_32t, t_dec(f,l), sb_data, w);
1009 d_1(aes_32t, t_dec(i,n), isb_data, v);
1012 d_4(aes_32t, t_dec(i,n), isb_data, v);
1016 d_1(aes_32t, t_dec(i,l), isb_data, w);
1019 d_4(aes_32t, t_dec(i,l), isb_data, w);
1026 d_1(aes_32t, t_dec(l,s), sb_data, w);
1034 d_4(aes_32t, t_dec(l,s), sb_data, w);
1039 d_1(aes_32t, t_dec(i,m), mm_data, v);
1042 d_4(aes_32t, t_dec(i,m), mm_data, v);
1045 #if defined(__cplusplus)